
SNPRINTF 1
ID: 838-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

SNPRINTF
Be careful with string formatting operations.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-16

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 7861 bytes

Attack Category • Malicious Input

Vulnerability Category • Buffer Overflow

• Format string

• No Null Termination

Software Context • String Formatting

Location • stdio.h

Description Writes into the character string str the result of
formatting according to the string format (identical
to printf format) the arguments following the string
format. The string str is truncated to at most size-1
characters and '\0' is added at the end of the string.
Returns the number of characters that would have
been written if the string str were unlimited.

Unfortunately, snprintf()'s variants have additional
problems and are thus EXTREMELY unportable.

Officially, snprintf() is not a standard C function in
the ISO 1990 (ANSI 1989) standard, though
sprintf() is, so not all systems include snprintf().
Even worse, some systems' snprintf() do not actually
protect against buffer overflows; they just call sprintf
directly. Old versions of Linux's libc4 depended
on a "libbsd'' with serious security shortcomings,
and apparently some old HP systems did the same.
Linux's current version of snprintf is known to
work correctly, that is, it does actually respect the
boundary requested. The return value of snprintf()
varies as well; the Single Unix Specification (SUS)
version 2 and the C99 standard differ on what is
returned by snprintf(). Finally, it appears that at least
some versions of snprintf don't guarantee that its
string will end in NULL; if the string is too long,
it won't include NULL at all. Note that the glib
library (the basis of GTK, and not the same as the
GNU C library glibc) has a g_snprintf(), which has
a consistent return semantic, always null-terminates,

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

SNPRINTF 2
ID: 838-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

and most importantly always respects the buffer
length.

In general, snprintf
1. can return a negative number if the buffer is too
small
2. can return the number of bytes that it should have
written
3. might not null terminate the string
4. might null terminate the string

Note: snprintf() is a good substitute for strcat() and
similar string concatenation jobs because it takes a
maximum buffer size, not just a limit on characters
to write (i.e. the user does not need to keep track of
it).

APIs Function Name Comments

_snprintf fmt: 2; src 3 variable;

_sntprintf fmt: 2; src 3 variable;

_snwprintf fmt: 1; src: 3 variable;

_vsnprintf fmt: 2; src 3 variable;

_vsntprintf fmt: 2; src 3 variable;

_vsnwprintf fmt: 2; src 3 variable;

snprintf fmt: 2; src: 3 variable;

snwprintf fmt: 1; src: 3 variable;

vsnprintf fmt: 1; src: 3 variable;

wnsprintf fmt: 1; src: 3 variable;

wvnsprintf fmt: 1; src: 3 variable;

Method of Attack An attacker could potentially input an excessively
long string that when used by snprintf() could result
in a buffer overflow.

The snprintf() and _snprintf() functions are generally
non-portable.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Portability
is generally
sacrificed if
snprintf is used.

1. Thorough
analysis (string
testing) of
buffer overflow
and all error
scenarios and

SNPRINTF 3
ID: 838-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

verification of
return values
must be done.

2. snprintf()
CAN BE safer
than sprintf,
depending
on how
snprintf() was
implemented.
The most
serious problem
with snprintf()
can occur when
snprintf() is
implemented
simply by
calling sprintf().

Therefore the
best solution
for protecting
snprintf() (in
a generally
portable
manner) is
to perform
the bounds
checking
solutions as
described in
sprintf(). (See
sprintf() rule.)

Signature Details int snprintf(char *str, size_t size, const char
*format, ...);

Examples of Incorrect Code /* Again, the real problem
with snprintf() has to do with
portability. */
/* Generally snprintf can be
safer than sprintf(), but it is
not guaranteed */
/* based on the implementation.
Therefore any use of snprintf()
that doesn't */
/* incorporate application based
bound checks are thus vulnerable
*/

[...]

snprintf(dst, sizeof(dst) - 1,
"%s", src) /* and see below */

[...]

SNPRINTF 4
ID: 838-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

Examples of Corrected Code /* See sprintf() rule */

/* and additionally */

if (snprintf(dst, sizeof(dst) - 1,
"%s", src) > sizeof(dst) - 1) {
/* Overflow */
...
}

Source References • Howard, Michael & LeBlanc, David C. Writing
Secure Code, 2nd ed. Redmond, WA: Microsoft
Press, 2002, ISBN: 0735617228.

• http://howtos.linux.com/howtos/Secure-
Programs-HOWTO/dangers-c.shtml

Recommended Resource

Discriminant Set Operating Systems • Windows

• UNIX

• Linux

• HP-UX

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://howtos.linux.com/howtos/Secure-Programs-HOWTO/dangers-c.shtml
http://howtos.linux.com/howtos/Secure-Programs-HOWTO/dangers-c.shtml
mailto:copyright@cigital.com

